Journal of Organometallic Chemistry, 433 (1992) 79–94 Elsevier Sequoia S.A., Lausanne JOM 22600

Structural trends in bis(pentamethylcyclopentadienyl)lanthanide and yttrium complexes

William J. Evans and Samuel E. Foster

Department of Chemistry, University of California-Irvine, Irvine, California 92717 (USA) (Received October 2, 1991)

Abstract

Structural data on over 90 bis(pentamethylcyclopentadienyl) lanthanide and yttrium complexes are presented and analyzed to define trends in structural parameters. Comparative data useful in evaluating structural aspects of molecules to be crystallographically characterized in the future are presented.

Introduction

In recent years there has been a rapid expansion in the number of X-ray structural determinations performed on organolanthanide and organoyttrium complexes. There are several reasons why so many X-ray crystallographic studies have been done on this particular class of complexes. First, since many of the metals are paramagnetic [1], NMR characterization is often not definitive and cannot be used as commonly as it is in transition metal chemistry. Second, since steric factors are so important in determining the organometallic chemistry of these metals [2], structural data are often essential to understand observed reactivity patterns. Third, there are now numerous cases [3–14] in which the basic connectivity of the atoms in the molecule was known without a crystallographic determination, but the X-ray crystal study revealed an unexpected structural feature, e.g., an unusual bond length, asymmetry, agostic interaction, etc., which often was one of the most significant new aspects of the molecule! Without the X-ray study, these important features would have been missed.

So many new organolanthanide and organoyttrium structures have appeared in the literature since the last structural reviews of this area were published [15 -18] that it is currently difficult to compare new structural data with published

(continued on p. 89)

Correspondence to: Dr. W.J. Evans, Department of Chemistry, University of California-Irvine, Irvine CA 92717, USA.

Advertise in the state of the s		Summer filmonau					
Formula	Formal metal	Ln-C(Cp* ring)	(Cp* ring centroid)-	Ln-C(non-	Ln-O(THF)	Heteroatom,	Refer-
$(Cp^* = C_5Me_5)$	coordination	average	metal–(Cp* ring	Cp⁺)	distance (Å)	Ln-heteroatom	ence
	number	distance (Å)	centroid) angle (deg)	distance (Å)		distance (Å)	
Lanthanum	0	(1)18 ((1)012 C			yr.
[\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	o ~	-	170 56(5)	2. /40(4) 2 724(4)	1	L, 2.JJ/(4/	5 F
10-12-14-11-12-14-14 - 14-1-19-17-10-13-1	0	I	1000-671	2.759(4) 2.688(4)	1	ı	4
$[Cp_2^{*}La(THF)(\mu-\eta^1:\eta^3-C_4H_6)LaCp_2^*]$	8	I	134.25(5)	2.633(4)	2.637(3)	I	17
Cerium Cp‡CeI(NCMe),	6	2.80(2)	۔ 135	I	I	N, 2.63(2)	40
7 /						I, 3.231(2)	
$Cp_2^{+}Ce(\mu-Cl)_2Li(OEt_2)_2$	8	ı	ı	I	ł	Cl, 2.812(1)	39
$[Cp_2^*Ce(\mu_3-Cl)_2K(THF)]_{\mu}$	80	2.79(2)	136	I	I	Cl, 2.777(1)	57
Cp2Ce(CH(SiMe3)2]	л a	2.79(4) 2.78(4)	i	2.535(5)	I	I	12
Praseodymium							
Cp2Pr(µ-Cl)2Na(DME)2	æ	2.795(20) 2.77(2)	134.9(7) 135.5(7)	1	I	Cl, 2.728(5) 2.747(8)	68
Neodymium Cp [‡] Nd[CH(SiMe ₃) ₂]	7 a	2.76(3)	134.4	2.517(7)	1	I	14
Samarium							
$Cp_{2}^{2}Sm(\mu-\eta^{4}:\eta^{2}-CH_{2}CHPh)$	10	2.792(36)	127.4	2.674(15)	I	I	80
	c			2.732(15)			
	. ح	2.77(2)	134.6	2.78(11)	I	I	65
$Cp_2Sm(\eta^2,C_5H_5)$	6	2.770(3)	127.0	2.738(4)	I	I	56
$Cp_2^2Sm(\mu-\eta^3;\eta^1-C_5H_5)SmCp_2^3$	6	2.766(3)	127.8	2.800(4)	1	1	56
[Cp ₂ ⁵ Sm(CNC ₆ H ₁₁)(µ-CN)] ₃	6	2.75(2)	133.0	2.58(2)	I	I	58
			135.1	2.57(2)			

Table 1 Structural parameters in trivalent bis(pentamethylcyclopentadienyl) lanthanide and yttrium complexes

80

Cp ₂ [*] Sm(η ² -PhN ₂ Ph)(THF)	6	2.76(2)	135.9 137.6	ł	2.532(8) 2.577(9)	N, 2.39(1) 2.43(1)	60
						2.40(1) 2.45(1)	
[Cp [±] ₂ Sm(THF)] ₂ (μ-η ² : η ² - N,C,H,-C,H,N,)	6	2.752(8)	134.2	1	2.555(5)	N, 2.351(6) 2.430(6)	62
Cp25mI(72-tetrazole)	6	2.73(2)	137	I	I	I, 3.100(2) N, 2.81(2)	21
$[Cp_2^*CISm(\mu-CI)SmCp_2^*(\mu-\eta^1:\eta^3-tetraglyme)SmCp_2^*]^+$	6	2.74(5)	134	I	I	2.54(1) O, 2.56(3) 2.46(2)	55
[Cp ₂ [*] Sm(μ-η ¹ : η ¹ : η ² -O ₂ CCCO)- (THF)SmCp [*] ₂],	6	2.73(3)	132.9	2.77(2)	I	2.72(2) O, 2.39(1) 2.38(1)	50
Cp [*] ₂ SmMe(THF)	8	2.711(6)	139.4	2.484(14)	2.473(9)		61
Cp [*] ₂ Sm(CH ₂ Ph)(THF)	80	2.755(2)	133.8	2.528(8)	2.498(5)	I	67
Cp [±] SmPh(THF)	8	2.737(13)	136.9	2.511(8)	2.511(4)	I	46
Cp ₂ ² Sm(μ-H)(μ-η ¹ : η ⁵ - CH_C_Me_ISmCn [*]	×	2.744(21)	135.4	2.638(7)	I	H, 2.05(11)	67
Cp ² 5mt42mcp [Cp ² 5mt(μ-Me) ₂ AlMe ₂] ₂	8	2.68(1)	138.5	2.75(2)	I	I	61
$Cp_2^*Sm(\mu-Et)_2AIEt_2$	80	2.712(2)	134.2	2.662(4)	1	1	S
Cp [‡] Sm(C≡CPh)(THF)	80	2.71(3)	136.9	2.50(2)	2.49(1)	I	9 9
$Cp_{2}^{2}Sm(\eta^{3}-CH_{2}CHCH_{2})$	80	2.724(4)	140.3	2.647(16)	1	1	65
$Cp_2^{2}Sm(n^{3}-CH_2CHCHMe)$	80	2.73(2)	138.9	2.65(7)	ı	1	65
		2.73(3)	139.1	2.64(4)			
(Cp ₂ *Sm) ₂ (μ-η ³ :η ³ -CH ₂ CH- CHCH,CH,CHCHCH,)	œ	2.729(3)	138.3	2.66(6) 2.66(7)	ı	I	65
$Cp_2^*Sm(\mu-\eta^4: \eta^2-CH_2CHPh)SmCp_2^*$	8	2.718(25)	135.9	2.537(15)	I	i	8
	o		0 007	(CI)/ #0.7			
	0	(7)[/.7	6.001	2.76(1)	I	1	4C,U2
[Cp [*] ₂ Sm] ₂ (μ-η ² :η ² .'BuCPPC'Bu)	80	I	1	2.557(6)	I	P, 2.952(2)	41
				2.556(6)		2.945(2)	
$[Cp_2^*Sm(CNCMe_3)]_2(\mu-O)$	80	2.80(1)	133.5	2.62(1)	1	O, 2.101(7)	21
			131.9	2.66(1)		2.117(7)	
$[Cp_2^*Sm]_2(\mu-\eta^2:\eta^2-N_2)$	8	2.73(2)	134.9	ł	I	N, 2.347(6)	7
			140.0			2.368(6)	

Formula	Formal metal	Ln-C(Cp [*] ring)	(Cp* ring centroid)-	Ln-C(non-	Ln-O(THF)	Heteroatom,	Refer-
$(Cp^* = C, Me_s)$	coordination	average	metal-(Cp* ring	Cp*)	distance (Å)	Ln-heteroatom	ence
	number	distance (Å)	centroid) angle (deg)	distance (Å)		distance (Å)	
Co*Sm(biov)	8	2.724(3)	134.8		,	N, 2.427(2)	62
	,					2.436(2)	
$(Cp^{+}Sm)_{J}[\mu-\eta^{2}:\eta^{2}(PhCH=$	œ	2.76(2)	134.1	1	I	N, 2.315(13)	62
NNCHPh),]			132.8			2.431(14)	
						N, 2.350(12) 2.411(13)	
(Cn±Sm)_(n ² n ² .	œ	2.71(1)	140.8	I	I	0, 2, 191(6)	59
nocH=C(O)C(O)=CHnv))					N, 2.473(7)	
$(Cp_{2}^{*}Sm)_{2}[(\mu-\eta^{2};\eta^{2}(OCNPh)_{2}]$	œ	2.71(1)	138.3	ł	I	O, 2.30(1) N, 2.49(1)	53
$[Cp_*^Sm(THF)]_{n}(u_{-}n^1; n^1-O, C, H, n)$	8	2.75(2)	132.9	1	2.490(9)	0, 2.099(9)	21
$[Cp_2^*Sm(\mu - \eta^1; \eta^1; \eta^2 - O_2CCCO)]$	8	2.70(3)	135.2	1	2.47(1)	0, 2.25(1)	50
$SmCp_2^*(THF)]_2$ $IC_{=}^*e_{=}(CpBF_{1}) [I_{=} = 1 : -1]$ is	0		133.7	I	ł	(01)2147(10)	49
OCHCHO	0		132.6			2.179(10)	2
•						2.392(10)	
•						(01)545.2	9
$[Cp_2^{*}Sm(OPPh_3)]_2(\mu -\eta^{-1}: \eta^{-1}trans)$	00	2.77(3)	132.6	I	I	0, 2.122(8)	49
OCHCHO]			131.4			2.107(7) 2.355(7)	
						2.391(7)	
$[Cp_2^{*}Sm(THF)]_2(\mu-\eta^1;\eta^1-OSiMe_OSiMe_O)]$	8	2.75(3)	135.5	ł	2.465(5)	0, 2.157(5)	67
Co [*] Sm[O(CH,),C _* Me _* (THF)	8	2.76(3)	135.1	ł	2.49(1)	O, 2.08(1)	66
[Cp [*] Sm(<i>u</i> -OC), FeCp [*]],	~	2.694(9)	ł	1	I	0, 2.348(4)	42
	1					2.339(4)	
[Cp;\$Sm(THF),]+	80	2.69(2)	134.2	1	2.46(1)	ı	66
Cp [*] SmCl(THF)	80	2.71(2)	133 (1)	I	2.48(2)	Cl, 2.709(8)	24
4			136 (1)		2.44(2)	2.765(8)	

Table 1 (continued)

[Cp ₂ [*] Cl <i>Sm</i> (μ-Cl) <i>Sm</i> Cp ₂ [*] (μ- tetraglyme)SmCp ₂ [*]] ⁺	œ	2.72(3) 2.72(5)	136 133	I	I	(μ-Cl), 2.77(1) (μ-Cl), 2.89(1) O, 2.56(3)	55
[(Cp [*] 2SmCl) ₂ (μ-Cl)] ⁻	œ	2.71(5) 2.73(4)	128.2 127.8	I	I	Cl, 2.60(1) Cl, 2.623(9) 2.65(1) (μ-Cl), 2.76(1)	55
[Cp ₂ ² Sm(μ-Cl)] ₃	8	2.73(4)	128.2 127.8	I	I	2.764(9) Cl, 2.849(7) 2.892(7)	55
Cp [*] SmI(THF)	ø	2.725(1)	136	I	2.45(1)	I, 3.043(2)	24
$[Cp_{2}^{*}Sm(\mu-H)]_{2}$	œ	2.76(3)	.137 130.5	t	I	- 3.053(2)	43
(Cp ₂ ² Sm) ₂ (μ-η ¹ :η ¹ -PhN ₂ Ph) C=*ε(ΗV	а Г Г	2.74(3) 2.715/20)	133 (1) 131 ()	I	ł	N, 2.40(1) 2.41(1) H 2.11(0)	4 LY
$CP_2SII(\mu-TIA(\mu-\eta) + \eta - \eta - \tau)$ $CH_2C_5Me_4)SmCp^*$ $(Co^*Sm)(0)$		(17)(1/.7	0.161	I I	1 1	(1) 2 (104(1)	45
CD ² Sm(OC, Me ₄ H)		2.68(1)	139.1	1 1	1 1	0, 2.13(1)	51
$(Cp_2^*Sm)_2(\mu-\eta^1;\eta^1-O_2C_{16}H_{10})$	7	2.70(3)	139.8	I	I	O, 2.08(2)	52
Yttrium Cp2*Y[η ² -C(CH ₂ -3,5-xylyl)= N(2,6-xylyl)[(THF-d _k)	6	2.728(5)	132.0(5)	2.392(3)	2.466(3)	N, 2.407(3)	13
Cp2*YMe(THF)	œ	2.72(2) 2.61(6)	137.0(3)	2.44(2)	2.379(8)	1	75
[Cp ₂ [*] Y(μ-Me) ₂ AlMe ₂] ₂	œ	ł	I	2.65(2) 2.67(2)	I	1	78
Cp [‡] Y(μ-C≡CCMe ₃) ₂ Li(THF)	80	2.65(1)	138.3	2.38(2)			23
Cp ₂ YCI(THF)	×	2.650(14) 2.659(15)	136.2(4) 136.6(4)	1	2.410(7)	Cl, 2.579(3) 2.577(3)	24
Cp ₂ *Y(μ-Cl)YClCp ₂ *	80	2.67(1)	135.8	I	1	Cl, 2.579(6)	8
Cp [*] Y[CH(SiMe ₃) ₂]	7 م	2.668(4)	134.4	2.468(7)	ł	-	74

I

Formula	Formal metal	Ln-C(Cp [*] ring)	(Cp* ring centroid)-	Ln-C(non-	Ln-O(THF)	Heteroatom,	Refer-
$(Cp^* = C_5Me_5)$	coordination	average	metal-(Cp* ring	Cp*)	distance (Å)	Ln-heteroatom	ence
	number	distance (Å)	centroid) angle (deg)	distance (Å)		distance (Å)	
Cp [*] ₂ Y[N(SiMe ₃) ₂]	7 a	2.667(4) 2.687(4)	132.4	1	1	N, 2.274(5)	74
		2.666(4) 2.690(4)	132.2			2.253(5)	
Cp2*Y(μ-Cl)YClCp2	7	2.60(2)	139 (3)	I	1	Cl, 2.640(5)	48
Holmium Cp ² HoCl(THF)	80	2.666(6)	135.6(2) 137.2(1)	I	2.382(3) 2.365(3)	Cl, 2. <i>577</i> (1) 2. <i>57</i> 8(1)	11
Ytterbium							
[Cp; Yb],[(μ-C=CPh),Yb]	80	2.61(2)	I	2.40(2)	1	I	32
Cp [‡] Yb(SPh)(NH ₃)	8	2.64(2)	136.2	I	ı	N, 2.423(8)	38
			136.9			2.432(8)	
						S, 2.670(3)	
						2.679(3)	
Cp [‡] Yb(TePh)(NH ₃)	80	2.63(2)	136.9	1	1	N, 2.50(1)	34
1						Te, 3.039(1)	
Cp [*] ₂ YbCl(η ¹ -Me ₂ PCH ₂ PMe ₂)	8	2.63(1)	134.9	I	I	Cl, 2.532(3)	31
r T		2.66(4)				P, 2.941(3)	
[Cp [*] ₂ Yb(μ-OC) ₂ Mn(CO) ₃] ₂	80	2.569(17)	143.8	I	1	0 (μ-co),	30
		2.579(14)				2.268(4)	
						(+)C1777	

Table 1 (continued)

[Cp ⁺ ₂ Yb(μ-OC) ₃ Mn(CO) ₂],	œ	2.59(2)	143.4	t	I	0 (μ-CO), 2.401(5) 2.349(4) 2.417(5)	30
[Cp [±] ₂ Yb] ₂ [(μ ₃ -OC) ₄ Fe ₃ (CO) ₇]	œ	2.573(13)	141.6(6)	I	I	$(\mu-CO),$ 2.243(4)	29
Cp2*Yb(THF)(µ-OC)Co(CO)3	80	2.596(2)	139.4(7)		2.335(2)	0 (μ-CO), 2.258(2)	58
{Cp [*] 2Yb} ₂ {((_{µ3} -CO) ₄ Co ₃ IC ₅ H ₄ - (SiMe ₄)],}	8	2.59(2)	140	1	I	0 (μ-CO), 2.230(4)	37
$Cp_2^{*}Yb(\eta^2-S_2CNEt_2)$	8	2.63(3)	I	I	1	S, 2.70(1)	33
$(Cp_{2}^{*}Yb)_{2}(\mu - \eta^{2}; \eta^{2}, Te_{2})$	80	2.626(16)	133.32	I	I	Te, 93.1513(9) 3.1598(7)	83
Cp [*] YbF(THF)	œ	2.628(5)	ı	1	2.330(3)	F. 2.026(2)	62
Cp; YbF(OEt,)	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	2.631(4)	ı	1	2.375(5)	F, 2.015(4)	62
Cp ⁵ ₂ YbCl(THF)	×	2.64(1)	136.1(1)	I	2.37	Cl, 2.539(4)	81
Cp [±] ₂ Yb(μ-Cl) ₂ AlCl ₂	8	2.58(2)	ı	I	I	μ-Cl, 2.760(1)	1
	Ċ					2.752(1)	ł
CP276(µ-CI)2LI(OEt2)2	×	2.634(9)	1	1	1	μ-Cl, 2.593(1)	11
Cp2Yb(μ-I) ₂ Li(OEt ₂) ₂	÷	2.625(4)	I	I	1	μ-I, 3.027(1)	F
(Cp [*] ₂ Yb) ₂ (μ-Se)	7	2.609(9)	138.94	1	I	μ-Se, 2.621(1)	35
Cp ₂ *Yb(μ-F)YbCp ₂ *	7	2.58(2)	139	1	1	F, 2.084(2)	36
Lutetium complexes Cp2 [*] Lu(μ-Me) ₂ PMe ₂	œ	I	128.2(5)	2.344(15) 2.378(15)	I	ı	69
Cp2 [±] Lu(<i>µ</i> -SCMe ₃) ₂ Li(THF) ₂	80	2.66(2)	131.5(3)	I	I	S, 2.709(3)	20
Cp [±] LuCl(THF)	8	2.63	137	1	I	C)(2)(2) Cl, 2.53	73
^a The actual coordination numbe	rt may be higher	due to interactions b	etween the metal and par	ts of the ligand of	her than the done	or atom.	

Formula	Formal metal	I n_C(Cn* ring)	(Cn* ring centroid)	I n_C(non_		Uatarootom	Dafa
(Cn*=C.Me.)	coordination		metal_(Cn [*] ring		distance (Å)	I I U - heteroatom	- 12121
	number	distance (Å)	centroid) angle (deg)	distance (Å)		distance (Å)	
Samarium							
Cp ₂ *Sm(THF) ₂	8	2.86(3)	136.8	I	2.64(2)	I	47
Cp [*] ₂ Sm(OC ₅ H ₈) ₂	œ	2.842(3)	138.2	ı	1	0, 2.677(5)	63
Cp2Sm(DME)	80	2.82(3)	140	1	I	0, 2.52(1)	72
						2.61(2)	
$Cp_2^*Sm(\mu-\eta^1:\eta^5-C_5H_5)SmCp_2^*$	7	2.812(4)	139.7	2.986(8)	I	ı	56
Cp [*] ₂ Sm(OC ₅ H ₁₀)	7	2.816(3)	140.0	1	ł	O, 2.630(6)	63
Cp ₂ *Sm	9	2.79(1)	140.1	1	t	1	84
Europium							
Cp ₂ [±] Eu	7	2.79(1)	140.3	I	I	I	84
Ytterbium							
Cp2*Yb(NC5H5)2	80	2.74(4)	136.3(3)	I	I	N, 2.586(7)	85
Cn [±] Yh(NH ,)(THF)	×	2 78(4)	135 11	ł	7 46(3)	(0)++-(U0
$Cp_{*}^{*}Yb(\mu-Me)BeCp_{*}^{*}$	7 a	2.680(3)	144.6	2.766(4)	•	-	8 =
Cp ² ₂ Yb[(μ-Et)AlEt ₂ (THF)]	7	2.679(17)	142.8	2.854(18)	1	ŀ	82
9				2.939(21)			1
$Cp_2^*Yb(\mu-C_1H_4)Pt(PPh_3)_2$	7	2.67(2)	142.3	2.781(6)	1	1	10
Cp2 Yb(MeC=CMe)	7	2.659(9)	143.3	2.850(10)	I	1	6
Cp22Yb(THF)	7	2.672(14)	143.5(3)	1	2.412(5)	1	27
		2.654(7)					
Cp [‡] Yb(μ-F)YbCp [*] ₂	7	2.69(2)	140	I	I	F, 2.317(2)	36
^a The actual coordination number	r may be higher du	e to interactions betv	veen the metal and parts	of the ligand oth	her than the dono	or atom.	

Structural parameters in divalent bis(pentamethylcyclopentadienyl) lanthanide complexes

Table 2

Variation i	n range and average of	f metal-carbon (C ₅ Me ₅ ring) distanc	ces as the metal changes for trivalen	t eight-coordinate (C ₅ Me ₅).	² Ln complexes
	Metal radius	Range of Ln-C(C ₅ Me ₅)	Average of Ln-C(C ₅ Me ₅)	Metal radius	Average
	« (لم)	distances (Å)	distances (Å)	minus samarium	minus samarium
				radius (Å)	average (Å)
La	1.16	2.81(1)	2.81(1)	0.081	0.08
ථ	1.143	2.79(2)	2.79(2)	0.064	0.06
Pr	1.126	2.77(2)-2.79(2)	2.78(1)	0.047	0.05
Sm	1.079	2.68(1)-2.80(1)	2.73(3)	0.0	0.0
Y	1.019	2.61(6)-2.72(2)	2.66(3)	- 0.06	- 0.07
Ho	1.015	2.666(6)	2.666(6)	- 0.064	-0.06
አ	0.985	2.57(2)-2.66(4)	2.61(3)	- 0.094	-0.12
Lu	0.977	2.63-2.66(2)	2.645(15)	-0.102	0.085
" Ref. 25.				-	

	Ĕ
	ð
	age
	ver
	1 3
	anc
	ge
	ran
	. S
	on
e	ati
abi	ari
Ē	>

Variation in structural	parameters as m	etal changes in Cp ² LnCl(7	THF) complexes			
formula	Metal	Ln-C(ring)	Ln-O(THF)	Ln-Cl	(Ring centroid)-	Reference
$Cp^* = C_5Me_5$	radius	average distance	distance (Å)	distance (Å)	metal~(ring	
	(ỷ) <i>-</i>	(ỷ)			centroid) angle (deg)	
Dp [*] SmCl(THF)	1.079	2.71(2)	2.48(2)	2.709(8)	133(1)	24
•			2.44(2)	2.765(8)	136(1)	
2p [*] YCI(THF)	1.019	2.655(25)	2.410(7)	2.579(3)	136.2(4)	24
				2.577(3)	136.6(4)	
DP;HoCI(THF)	1.015	2.666(6)	2.382(3)	2.577(1)	135.6(2)	71
1			2.365(3)	2.578(1)	137.2(1)	
2p*YbCl(THF)	0.985	2.64(1)	2.37	2.539(4)	136.1(1)	81
Cp [*] LuCI(THF)	0.977	2.63	I	2.53	137	73
	Ln radius minu	SU	Ln-C average	Average	Average	
	Sm radius (Å)		minus Sm~C	Ln-O minus	Ln-Cl minus	
			average (Å)	SmO (Å)	Sm-Cl (Å)	
D5*SmCI(THF)	0		0	0	0	
DP2 YCI(THF)	- 0.06		-0.065	- 0.05	-0.16	
DPHOCI(THF)	- 0.064		- 0.054	-0.09	-0.16	
DP2YbCI(THF)	-0.094		- 0.08	-0.09	-0.20	
p2LuCI(THF)	-0.102		- 0.09	1	-0.21	
Ref. 25.						

í (بلي

Table 4

information. For example, the December 1980 compilation of structures in *Comprehensive Organometallic Chemistry* [19] listed only 21 yttrium and lanthanide structures and *only one* complex which contained the C_5Me_5 ligand. Indeed, it is possible that some new structural data are not evaluated to the fullest extent because a current compilation of relevant information is not available [20].

Accordingly, we have assembled structural data on complexes of this type in order to enumerate known structures in an organized way and to identify present trends in structural parameters. We have chosen to emphasize bis(pentamethylcyclopentadienyl) complexes of the lanthanides and yttrium since this is the most common class of crystallographically characterized complexes of these metals and readily provides a large data base with which to determine ranges of structural parameters.

Presentation of data

Table 1 presents the structural data on trivalent bis(pentamethylcyclopentadienyl) complexes. The data are first grouped according to metal in decreasing radial size. For each metal, complexes are arranged according to decreasing formal coordination number. Within the formal coordination number sub-categories, complexes with σ -bound carbon donor atom ligands are listed first. Complexes in which the third anionic ligand is a π -bound carbon ligand are listed next, followed by complexes with nitrogen, oxygen, and halide donor atoms. Ligands with donor atoms congeneric with C, N, and O are listed with the C, N, and O categories, respectively. Bimetallic complexes which contain metals with different coordination numbers are listed twice, once under each coordination number category.

Table 2 lists data for divalent complexes arranged in a similar order. For the purposes of this review, cyclopentadienyl and allyl ligands are considered to occupy three and two coordination positions, respectively (consistent with number of donor electron pairs). Non-classical metal ligand interactions such as agostic interactions are not included in the formal coordination number, but when such interactions are discussed in the original paper, this is indicated by a footnote.

Discussion of data

Several general features on structurally characterized lanthanide complexes are readily evident from Tables 1 and 2. The predominant coordination number found in these crystalline systems is eight. Hence, for metals the size of the lanthanides, a ligand set containing two C_5Me_5 groups and two additional electron pair donor ligands readily leads to crystallizable complexes. Despite this preference for eight-coordination, coordination numbers can range from six to ten in these systems.

Samarium is the metal which has the most crystallographic data in Table 1, although it is unlikely that this arises from any special propensity of the $(C_5Me_5)_2Sm$ unit to crystallize better than other $(C_5Me_5)_2Ln$ units. Instead, the high reactivity of Sm^{II}, which provides synthetic pathways not available to the other metals [2], and the paramagnetism of Sm^{II} and Sm^{III}, which limits NMR characterization compared with trivalent La, Y and Lu, are more likely reasons for the large number of crystallographically characterized samarium complexes.

Formula ($Cp^* = C_5 Me_5$)	Ln radius (Å) ^a	Ln-C(ring) average distance (Å)	Ln-C(alkyl) (Å)	(Ring centroid)– metal–(ring centroid) angle (deg)	Refer- ence
$Cp_2^*Ce[CH(SiMe_3)_2]$	1.143	2.79(4) 2.78(4)	2.535(5)	_	12
$Cp_2^*Nd[CH(SiMe_3)_2]$	1.109	2.76(3)	2.517(7)	134.4	14
$Cp_2^*Y[CH(SiMe_3)_2]$	1.019	2.668(4)	2.468(7)	134.4	74
	Ln radius minus Y radius (Å)	Ln–C(ring) average minus Y radius (Å)	Ln–C(alkyl) minus Y–C(alkyl) (Å)		
$\overline{Cp_2^*Ce[CH(SiMe_3)_2]}$	0.124	0.012	0.07		
$Cp_2^*Nd[CH(SiMe_3)_2]$	0.090	0.09	0.05		
$Cp_2^*Y[CH(SiMe_3)_2]$	0	0	0		

Variation in structural parameters as the metal changes in (C₅Me₅)₂Ln[CH(SiMe₃)₂] complexes

^a Ref. 25.

It is interesting to note, however, that currently available crystallographic data suggest that the $(C_5Me_5)_2Sm$ unit is the most flexible of the $(C_5Me_5)_2Ln$ moieties. No other single lanthanide has been found to exhibit the full, six to ten range of coordination numbers. In addition, samarium is the only metal which has provided pairs of closely related complexes of coordination number n and n + 1 both of which crystallize, e.g., seven-coordinate $[(C_5Me_5)_2Sm]_2(\mu-\eta^1:\eta^{1-}O_2C_{16}H_{10})$ and eight-coordinate $[(C_5Me_5)_2Sm]_2(\mu-\eta^1:\eta^{1-}O_2C_{16}H_{10})$, seven-coordinate $[(C_5Me_5)_2Sm]_2(\mu-O)$ and eight-coordinate $[(C_5Me_5)_2Sm(CNCMe_3)]_2(\mu-O)$, and eight-coordinate $(C_5Me_5)_2SmI(C_6H_{10}N_4)$ [21]. Generally, just one preferred coordination number would be expected to crystallize. For samarium, it is possible that the combination of its particular radial size with the steric bulk of two C_5Me_5 ligands may not have a single preferred coordination number compared with $(C_5Me_5)_2Ln$ units with lanthanides of other sizes. More structural data on other lanthanides are needed before this possibility can be fully established.

The data in Tables 1 and 2 are summarized and compared in Tables 3–6. In order to get the best comparisons, these tables focus on categories which are most common. Hence, Table 3 summarizes data on eight-coordinate complexes and shows how the average $Ln-C(C_5Me_5 ring)$ distances decrease as the size of the metal decreases. The last two columns of Table 3, show the data normalized to the most common metal samarium. The similarity of the numbers in these two columns shows that the average distances parallel the metal radius as expected [15,16,22]. The entries for ytterbium in Table 3 are the least consistent with the trend, but this may be due to the particular set of eight-coordinate ytterbium complexes which have been crystallographically reported. The next comparison described below (Table 4) shows no anomaly for ytterbium. Obviously, when these tables are used to evaluate a newly characterized complex, the best comparisons will involve the

Table 5

Table 6

Coordination number	Metal radius (Å) "	Range of average Ln-C(Cp* ring) distances (Å)	Average of known Ln-C(Cp* ring) averages (Å)	Range of Ln–O(THF) distances (Å)	Average of Ln–O(THF) distances (Å)
Trivalent sama	rium complexe	.5			
10 Cp [*] ₂ SmL₄	_	2.79(4)	2.79(4)	-	-
9 Cp [*] SmL ₃	1.132	2.73(2)-2.77(2)	2.75(2)	2.53(1)-2.58(1)	2.56(2)
8 Cp ⁵ SmL ₂	1.079	2.68(1)-2.80(1)	2.73(3)	2.44(2)-2.511(4)	2.48(2)
7 Cp [*] ₂ SmL	1.02	2.68(1)-2.74(3)	2.71(2)	-	-
Divalent sama	rium complexe	s			
8 Cp [*] ₂ SmL ₂	1.27	2.82(3) -2.86(3)	2.84(2)	2.64(2)	2.64(2)
7 Cp ³ SmL	1.22	2.812(4)-2.816(3)	2.814(2)	-	-
6 Cp ₂ Sm	_	2.79(1)	2.79(1)	-	-
^a Ref. 25					

Variation in structural parameters according to coordination number for (C₅Me₅)₂Sm complexes

specific metal with ligands with the most similar steric requirements [23] found in Tables 1 or 2.

Comparisons of bond length changes as the metal changes are continued in Tables 4 and 5. These tables use structural data for $(C_5Me_5)_2LnCl(THF)$ and $(C_5Me_5)_2Ln[CH(SiMe_3)_2]$, which are the two most common specific classes of complexes in Table 1. In each case, the normalized data at the bottom of the table show that the Ln-C(ring) distances follow the trends expected on the basis of radial size. However, the Ln-O(THF), Ln-Cl, and Ln-C(alkyl) distances in Tables 4 and 5 do not follow the expected pattern as closely as the Ln-C(ring) distances. This type of variation has been observed previously in the metal halide distances [23,24].

Data on the effect of coordination number on $Ln-C(C_5Me_5 \text{ ring})$ and Ln-O(THF) distances are summarized in Table 6 using samarium complexes. As expected, the distances increase with increasing coordination number and the increases are consistent with Shannon radii for metals with different coordination numbers [25].

A comparison of trivalent and divalent Ln–C distances is also presented in Table 6. For samarium complexes of the same coordination number, there is a clear distinction between the ranges of distances for trivalent and divalent species. For example, for eight-coordinate systems, the trivalent range is 2.68(1)-2.80(1) Å and the divalent range is 2.82(3)-2.86(3) Å. In fact, the trivalent and divalent distances nearly fall into two separate groups even if coordination number is not considered: for trivalent complexes in Table 6, the Sm–C average lengths do not exceed 2.80(1) Å and for divalent complexes, the Sm–C distances are 2.79(1) Å or larger. The overlap occurs between the rare examples of ten-coordinate Sm³⁺ and six-coordinate Sm²⁺. As a result, Sm–C(C₅Me₅) distances for most samarium complexes are indicative of the valence state of the metal for a given coordination number. A similar situation obtains for ytterbium. Average Yb^{III}–C(C₅Me₅) distances range from 2.57(2)–2.66(4) Å whereas for Yb^{III} the range is 2.65(1)–2.78(4) Å.

Trivalent-divalent comparisons are also evident from pairs of entries in Tables 1 and 2 which differ *only* in oxidation state. For example, $[(C_5Me_5)_2Sm(THF)_2]^+$

and $(C_5Me_5)_2Sm(THF)_2$ have average $Sm-C(C_5Me_5)$ distances of 2.69(2) and 2.86(3) Å, respectively. The Sm-O distances differ by a comparable amount, 2.46(1) and 2.64(2) Å. Similarly, the trivalent and divalent metal centers of $Cp_2^*Yb(\mu$ -F)YbCp_2* exhibit Yb-C(C_5Me_5) distances of 2.58(2) and 2.69(2) Å, respectively. In this case, the Yb-F distances have a larger difference, 2.084(2) and 2.317(2) Å. These divalent-trivalent differences are in sharp contrast to differences in transition metal complexes of different valence [22]. For example, the average Fe-C distances found in $(C_5H_5)_2Fe^+$ ions, 2.067–2.076 Å, are actually larger than those in ferrocene, 2.045 Å [26].

Acknowledgments

We thank the National Science Foundation for support of this project and Dr. Joseph W. Ziller and Ms. Tammy LaFreniere for help in assembling the data.

References

- 1 W.J. Evans and M.A. Hozbor, J. Organomet. Chem., 326 (1987) 299.
- 2 W.J. Evans, Adv. Organomet. Chem., 24 (1985) 131; W.J. Evans, Polyhedron, 6 (1987) 803.
- 3 W.J. Evans, L.A. Hughes and T.P. Hanusa, Organometallics, 5 (1986) 1285.
- 4 W.J. Evans, D.K. Drummond, S.G. Bott and J.L. Atwood, Organometallics, 5 (1986) 2389.
- 5 W.J. Evans, L.R. Chamberlain and J.W. Ziller, J. Am. Chem. Soc., 109 (1987) 7209.
- 6 W.J. Evans, M.S. Sollberger, S.I. Khan and R. Bau, J. Am. Chem. Soc., 110 (1988) 439.
- 7 W.J. Evans, T.A. Ulibarri and J.W. Ziller, J. Am. Chem. Soc., 110 (1988) 6877.
- 8 W.J. Evans, T.A. Ulibarri and J.W. Ziller, J. Am. Chem. Soc., 112 (1990) 219.
- 9 C.J. Burns and R.A. Andersen, J. Am. Chem. Soc., 109 (1987) 941.
- 10 C.J. Burns and R.A. Andersen, J. Am. Chem. Soc., 109 (1987) 915.
- 11 C.J. Burns and R.A. Andersen, J. Am. Chem. Soc., 109 (1987) 5853.
- 12 H.J. Heeres, J. Renkema, M. Booij, A. Meetsma and J.H. Teuben, Organometallics, 7 (1988) 2495.
- 13 K.H. den Haan, G.A. Luinstra, A. Meetsma and J.H. Teuben, Organometallics, 6 (1987) 1509.
- 14 G. Jeske, H. Lauke, H. Mauermann, P.N. Swepston, H. Schumann and T.J. Marks, J. Am. Chem. Soc., 107 (1985) 8091.
- 15 E.C. Baker, G.W. Halstead, K.N. Raymond, Struct. Bonding, 251 (1976) 23.
- 16 K.N. Raymond and C.W. Eigenbrot, Jr., Acc. Chem. Res., 13 (1980) 276.
- 17 J.H. Forsberg and T. Moeller, in T. Moeller, U. Kruerke and E. Schleitzer-Rust (Eds.), Gmelin Handbook of Inorganic Chemistry, 8th edition, Springer-Verlag, Berlin, 1983, Part D6, p. 137.
- 18 T.J. Marks and R.D. Ernst, in G. Wilkinson, F.G.A. Stone and E.W. Abel (Eds.), Comprehensive Organometallic Chemistry, Pergamon Press, Oxford, 1982, Vol. 3, Chap. 21.
- 19 M.I. Bruce, in G. Wilkinson, F.G.A. Stone and E.W. Abel (Eds.), Comprehensive Organometallic Chemistry, Pergamon Press, Oxford, 1982, Vol. 9.
- 20 W.J. Evans, R.A. Keyer and J.W. Ziller, Organometallics, 9 (1990) 2625.
- 21 W.J. Evans, D.K. Drummond, L.A. Hughes, H. Zhang and J.L. Atwood, Polyhedron, 7 (1988) 1693.
- 22 T.R. Boussie, D.C. Eisenberg, J. Rigsbee, A. Streitwieser and A. Zalkin, Organometallics, 10 (1991) 1922 and refs. therein.
- 23 E.g., see C.S. Day, V.W. Day, R.D. Ernst and S.H. Vollmer, Organometallics, 1 (1982) 998.
- 24 W.J. Evans, J.W. Grate, K.R. Levan, I. Bloom, T.T. Peterson, R.J. Doedens, H. Zhang and J.L. Atwood, Inorg. Chem., 25 (1986) 3614.
- 25 R.D. Shannon, Acta Crystallogr., Sect. A, 32 (1976) 751.
- 26 M.R. Churchill, A.G. Landers and A.L. Rheingold, Inorg. Chem., 20 (1981) 849 and refs. therein.
- 27 T.D. Tilley, R.A. Andersen, B. Spencer, H. Ruben, A. Zalkin and D.H. Templeton, Inorg. Chem., 19 (1980) 2999.
- 28 T.D. Tilley and R.A. Andersen, J. Chem. Soc., Chem. Commun., (1981) 985.
- 29 T.D. Tilley and R.A. Andersen, J. Am. Chem. Soc., 104 (1982) 1772.
- 30 J.M. Boncella and R.A. Andersen, Inorg. Chem., 23 (1984) 432.

- 31 T.D. Tilley, R.A. Andersen and A. Zalkin, Inorg. Chem., 22 (1983) 856.
- 32 J.M. Boncella, T.D. Tilley and R.A. Andersen, J. Chem. Soc., Chem. Commun., (1984) 710.
- 33 T.D. Tilley, R.A. Andersen, A. Zalkin and D.H. Templeton, Inorg. Chem., 21 (1982) 2644.
- 34 D.J. Berg, R.A. Andersen and A. Zalkin, Organometallics, 7 (1988) 1858.
- 35 D.J. Berg, C.J. Burns, R.A. Andersen and A. Zalkin, Organometallics, 8 (1989) 1865.
- 36 C.J. Burns and R.A. Andersen, J. Chem. Soc., Chem. Commun., (1989) 136.
- 37 J.M. Boncella and R.A. Andersen, J. Chem. Soc., Chem. Commun., (1984) 809.
- 38 A. Zalkin, T.J. Henly and R.A. Andersen, Acta. Crystallogr., Sect. C, 43 (1987) 233.
- 39 M.D. Rausch, K.J. Moriarty, J.L. Atwood, J.A. Weeks, W.E. Hunter and H.G. Brittain, Organometallics, 5 (1986) 1281.
- 40 P.N. Hazin, C. Lakshminarayan, L.S. Brinen, J.L. Knee, J.W. Bruno, W.E. Streib and K. Folting, Inorg. Chem., 27 (1988) 1393.
- 41 A. Recknagel, D. Stalke, H.W. Roesky and F.T. Edelmann, Angew. Chem., Int. Ed. Engl., 28 (1989) 445.
- 42 A. Recknagel, A. Steiner, S. Brooker, D. Stalke and F.T. Edelman, Chem. Ber., 124 (1991) 1373.
- 43 W.J. Evans, I. Bloom, W.E. Hunter and J.L. Atwood, J. Am. Chem. Soc., 105 (1983) 1401.
- 44 W.J. Evans, J.H. Meadows, W.E. Hunter and J.L. Atwood, Organometallics, 2 (1983) 1252.
- 45 W.J. Evans, J.W. Grate, I. Bloom, W.E. Hunter and J.L. Atwood, J. Am. Chem. Soc., 107 (1985) 405.
- 46 W.J. Evans, I. Bloom, W.E. Hunter and J.L. Atwood, Organometallics, 4 (1985) 112.
- 47 W.J. Evans, J.W. Grate, H.W. Choi, I. Bloom, W.E. Hunter and J.L. Atwood, J. Am. Chem. Soc., 107 (1985) 941.
- 48 W.J. Evans, T.T. Peterson, M.D. Rausch, W.E. Hunter, H. Zhang and J.L. Atwood, Organometallics, 4 (1985) 554.
- 49 W.J. Evans, J.W. Grate and R.J. Doedens, J. Am. Chem. Soc., 107 (1985) 1671.
- 50 W.J. Evans, J.W. Grate, L.A. Hughes, H. Zhang and J.L. Atwood, J. Am. Chem. Soc., 107 (1985) 3728.
- 51 W.J. Evans, T.P. Hanusa and K.R. Levan, Inorg. Chim. Acta, 110 (1985) 191.
- 52 W.J. Evans, L.A. Hughes, D.K. Drummond, H. Zhang and J.L. Atwood, J. Am. Chem. Soc., 108 (1986) 1722.
- 53 W.J. Evans and D.K. Drummond, J. Am. Chem. Soc., 108 (1986) 7440.
- 54 W.J. Evans, R.A. Keyer, H. Zhang and J.L. Atwood, J. Chem. Soc., Chem. Commun., (1987) 837.
- 55 W.J. Evans, D.K. Drummond, J.W. Grate, H. Zhang and J.L. Atwood, J. Am. Chem. Soc., 109 (1987) 3928.
- 56 W.J. Evans and T.A. Ulibarri, J. Am. Chem. Soc., 109 (1987) 4292.
- 57 W.J. Evans, J.M. Olofson, H. Zhang and J.L. Atwood, Organometallics, 7 (1988) 629.
- 58 W.J. Evans, D.K. Drummond, H. Zhang and J.L. Atwood, Organometallics, 7 (1988) 797.
- 59 W.J. Evans and D.K. Drummond, J. Am. Chem. Soc., 110 (1988) 2772.
- 60 W.J. Evans, D.K. Drummond, L.R. Chamberlain, R.J. Doedens, S.G. Bott, H. Zhang and J.L. Atwood, J. Am. Chem. Soc., 110 (1988) 4983.
- 61 W.J. Evans, L.R. Chamberlain, T.A. Ulibarri and J.W. Ziller, J. Am. Chem. Soc., 110 (1988) 6423.
- 62 W.J. Evans and D.K. Drummond, J. Am. Chem. Soc., 111 (1989) 3329.
- 63 W.J. Evans and T.A. Ulibarri, Polyhedron, 8 (1989) 1007.
- 64 W.J. Evans, D.K. Drummond, T.P. Hanusa and J.M. Olofson, J. Organomet. Chem., 376 (1989) 311.
- 65 W.J. Evans, P. Jutzi and T.A. Ulibarri, Inorg. Chim. Acta, 168 (1990) 5.
- 66 W.J. Evans, T.A. Ulibarri, L.R. Chamberlain, J.W. Ziller and D. Alvarez, Organometallics, 9 (1990) 2124.
- 67 W.J. Evans, R.A. Keyer and J.W. Ziller, J. Organomet. Chem., 394 (1990) 87.
- 68 H. Schumann, I. Albrecht, J. Loebel, E. Hahn, M.B. Hussain and D. van der Helm, Organometallics, 5 (1986) 1296.
- 69 H. Schumann, I. Albrecht, F.-W. Reier and E. Hahn, Angew. Chem., Int. Ed. Engl., 23 (1984) 522.
- 70 H. Schumann, I. Albrecht and E. Hahn, Angew. Chem., Int. Ed. Engl., 24 (1985) 985.
- 71 H. Schumann, J. Loebel, D. van der Helm and M.B. Hossain, Z. Naturforsch., Teil B, 43 (1988) 323.
- 72 A. Scholz, A. Smola, J.L. Scholz, H. Schumann and K. Thiele, Angew. Chem., Int. Ed. Engl., 30 (1991) 435.
- 73 L. Gong, A. Streitweiser and A. Zalkin, J. Chem. Soc., Chem. Commun., (1987) 460.

- 74 K.H. Den Haan, J.L. De Boer, J.H. Teuben, A.L. Spek, B. Kojic-Prodic, G.R. Hays and R. Huis, Organometallics, 5 (1986) 1726.
- 75 K.H. Den Haan, J.L. De Boer, J.H. Teuben, W.J.J. Smeets and A.L. Spek, J. Organomet. Chem., 327 (1987) 31.
- 76 H.J. Heeres, A. Meetsma and J.H. Teuben, Angew. Chem., Int. Ed. Eng., 29 (1990) 420.
- 77 P.L. Watson, J.F. Whitney and R.L. Harlow, Inorg. Chem., 20 (1981) 3271.
- 78 M.A. Busch, R. Harlow and P.L. Watson, Inorg. Chim. Acta, 140 (1987) 15.
- 79 P.L. Watson, T.H. Tulip and I. Williams, Organometallics, 9 (1990) 1999.
- 80 A.L. Wayda, J.L. Dye and R.D. Rogers, Organometallics, 3 (1984) 1605.
- 81 H. Yasuda, H. Yamamoto, K. Yokota and A. Nakamura, Chem. Lett., (1989) 1309.
- 82 H. Yamamoto, H. Yasuda, K. Yokota, A. Nakamura, Y. Kai and N. Kasai, Chem. Lett., (1988) 1963.
- 83 A. Zalkin and D.J. Berg, Acta Crystallogr., Sect. C, 44 (1988) 1488.
- 84 W.J. Evans, L.A. Hughes and T.P. Hanusa, Organometallics, 5 (1986) 1285.
- 85 T.D. Tilley, R.A. Andersen, B. Spencer and A. Zalkin, Inorg. Chem., 21 (1982) 2647.